Scienza dei Polimeri
FILIPPO CANGIALOSI

Proprietà e Lavorazione delle Materie Plastiche

Guida pratica per i tecnici dell'industria

www.plasticando.it
<table>
<thead>
<tr>
<th>SULLA PARTE PRIMA: ELEMENTI DI SCIENZA DEI POLIMERI</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE COSA SONO I POLIMERI</td>
<td>23</td>
</tr>
<tr>
<td>Definizioni</td>
<td>23</td>
</tr>
<tr>
<td>Come si ottengono</td>
<td>23</td>
</tr>
<tr>
<td>Classificazione in base alla struttura</td>
<td>24</td>
</tr>
<tr>
<td>Classificazione in base al comportamento</td>
<td>24</td>
</tr>
<tr>
<td>STRUTTURA MOLECOLARE</td>
<td>27</td>
</tr>
<tr>
<td>Lo stato solido</td>
<td>27</td>
</tr>
<tr>
<td>Polimeri amorfi e cristallini</td>
<td>27</td>
</tr>
<tr>
<td>Cristallizzazione</td>
<td>27</td>
</tr>
<tr>
<td>La misura della cristallinità</td>
<td>28</td>
</tr>
<tr>
<td>Proprietà dei polimeri amorfi e cristallini</td>
<td>28</td>
</tr>
<tr>
<td>LE PROPRIETÀ TERMICHE DEI POLIMERI</td>
<td>31</td>
</tr>
<tr>
<td>L’energia</td>
<td>31</td>
</tr>
<tr>
<td>Energia termica</td>
<td>31</td>
</tr>
<tr>
<td>“Temperature” dei polimeri</td>
<td>31</td>
</tr>
<tr>
<td>TEMPERATURA DI FUSIONE</td>
<td>35</td>
</tr>
<tr>
<td>L’effetto della temperatura sui polimeri</td>
<td>35</td>
</tr>
<tr>
<td>La temperatura di fusione</td>
<td>35</td>
</tr>
<tr>
<td>La temperatura di transizione vetrosa</td>
<td>35</td>
</tr>
<tr>
<td>Temperatura di utilizzo</td>
<td>36</td>
</tr>
<tr>
<td>Temperatura di lavorazione</td>
<td>36</td>
</tr>
<tr>
<td>Temperatura di fusione per i polimeri termoindurenti</td>
<td>36</td>
</tr>
<tr>
<td>AMORFI E CRISTALLINI: LAVORAZIONE</td>
<td>39</td>
</tr>
<tr>
<td>Volume, Pressione e Temperatura</td>
<td>39</td>
</tr>
<tr>
<td>PESO MOLECOLARE</td>
<td>43</td>
</tr>
<tr>
<td>Definizione</td>
<td>43</td>
</tr>
<tr>
<td>Peso molecolare dei polimeri</td>
<td>43</td>
</tr>
<tr>
<td>Peso molecolare e lavorabilità</td>
<td>44</td>
</tr>
<tr>
<td>Come caratterizzare due polimeri o due lotti dello stesso polimero</td>
<td>44</td>
</tr>
<tr>
<td>ORIENTAZIONE</td>
<td>47</td>
</tr>
<tr>
<td>Definizione</td>
<td>47</td>
</tr>
<tr>
<td>Importanza dell’orientazione</td>
<td>47</td>
</tr>
<tr>
<td>L’orientazione nello stampaggio dei polimeri</td>
<td>47</td>
</tr>
<tr>
<td>ORIENTAZIONE</td>
<td>47</td>
</tr>
<tr>
<td>PROPRIETÀ MECCANICHE</td>
<td>49</td>
</tr>
<tr>
<td>Definizioni</td>
<td>49</td>
</tr>
<tr>
<td>Sforzo e deformazione</td>
<td>49</td>
</tr>
<tr>
<td>Modulo elastico</td>
<td>49</td>
</tr>
<tr>
<td>Tensione e allungamento a rottura</td>
<td>49</td>
</tr>
<tr>
<td>Resilienza</td>
<td>49</td>
</tr>
</tbody>
</table>
Resistenza a fatica

PROPRIETÀ MECCANICHE E STRUTTURA
- Concetti generali 53
- Modulo elastico 53
- Tensione e allungamento a rottura 54
- Resilienza 54

VISCOSITÀ
- Definizione 57
- Significato pratico 57
- La viscosità dei polimeri 57
- La curva di flusso 57
- Da che cosa dipende la viscosità 58
- Il Melt Flow Index 58

VISCOELASTICITÀ
- Introduzione 61
- Viscoelasticità lineare 62
- Viscoelasticità 64

RITIRO
- Definizione 71
- Cause 71
- Il ritiro nello stampaggio ad iniezione 71
- Rimedi 73

RIGONFIAMENTO (DIE SWELL)
- Definizione 77
- Viscoelasticità dei polimeri 77
- Lavorazione dei polimeri 78

DEGRADAZIONE
- Definizione 81
- Cause 81
- Rimedi 82

ADDITIVI
- Definizioni 85
- Riempitivi 85
- Stabilizzanti 85
- Plasticizzanti 85
- Antifiamma 85
- Antistatici 86
- Cos'è un Masterbatch 86

ESSICCAZIONE
- Quando e perché 87
- Come 87

MISCELE POLIMERICHE
- Definizioni 89
- Miscibilità e immiscibilità 89
- Effetto della miscelazione 89
Trasformazione 125
Impieghi 125

POLIPROPILENE (PP)
- Struttura chimica 127
- Caratteristiche 128
- Trasformazione 129
- Impieghi 129
- Nomi commerciali 129

POLISTIRENE (PS)
- Struttura chimica 131
- Caratteristiche 131
- Trasformazione 131
- Impieghi 131
- Polistirene (High Impact Polystyrene HYPS)
 - Struttura chimica 132
 - Caratteristiche 132
 - Trasformazione 132
 - Impieghi 132

COPOLIMERO STIRENE-ACRILONITRILE (SAN)
- Struttura chimica 133
- Caratteristiche 133
- Trasformazione 133
- Impieghi 133

COPOLIMERO ACRILONITRILE-BUTADIENE-STIRENE (ABS)
- Struttura chimica 135
- Caratteristiche 136
- Trasformazione 136
- Impieghi 136

POLIVINILCLORURO (PVC)
- Struttura chimica 137
- Caratteristiche 137
- Trasformazione 137
- Impieghi 138

POLIVINILIDENCLORURO (PVDC)
- Struttura chimica 139
- Caratteristiche 139
- Trasformazione 139
- Impieghi 139

POLITETRAFLUORETILENE (PTFE)
- Struttura chimica 141
- Caratteristiche 141
- Trasformazione 142
- Impieghi 142
- Nomi commerciali 142

POLIMETILMETACRILATO (PMMA)
- Struttura chimica 143
Caratteristiche 144
Trasformazione 144
Impieghi 144
Nomi commerciali 144

POLIOSSIMETILENE (POM) 145
Struttura chimica 145
Caratteristiche 145
Trasformazione 146
Impieghi 146
Nomi commerciali 146

POLIAMMIDI (PAN) 147
Struttura chimica 147
Caratteristiche 147
Svantaggi 148
Trasformazione 149
Impieghi 149
Nome commerciale 149

POLICARBONATO (PC) 151
Struttura chimica 151
Caratteristiche 151
Svantaggi 152
Trasformazione 152
Impieghi 152

POLIETILENTEREFTALATO (PET) 153
Struttura chimica 153
Caratteristiche 153
Trasformazione 153
Impieghi 153

ACETATO DI CELLULOSA (CA) 155
Struttura chimica 155
Caratteristiche 155
Trasformazione 155
Impieghi 156

PARTE QUARTA: I POLIMERI TERMOINDURENTI 157

RESINA FENOLICA (CRF) 159
Struttura chimica 159
Caratteristiche 160
Trasformazione 160
Impieghi 160
Nome commerciale 160

RESINA UREICHE (UF) E MELAMMINICHE (MF) 161
Struttura chimica 161
Caratteristiche 161
Trasformazione 161
Impieghi 161
<table>
<thead>
<tr>
<th>Segmento</th>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLIESTERE INSATURO (UP)</td>
<td>Struttura chimica</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>163</td>
</tr>
<tr>
<td>RESINA EPOSSIDICA (EP)</td>
<td>Struttura chimica</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>165</td>
</tr>
<tr>
<td>POLIURETANI RETICOLATI (PUR)</td>
<td>Struttura chimica</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>167</td>
</tr>
<tr>
<td>PARTE QUINTA: I POLIMERI ELASTOMERICI</td>
<td>Che cosa sono</td>
<td>169</td>
</tr>
<tr>
<td>GLI ELASTOMERI</td>
<td>Struttura chimica</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>171</td>
</tr>
<tr>
<td>GOMMA NATURALE (NR)</td>
<td>Struttura chimica</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>173</td>
</tr>
<tr>
<td>POLIBUTADIENE 1, 4 CIS (BR)</td>
<td>Struttura chimica</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>175</td>
</tr>
<tr>
<td>ELASTOMERO TERMOPLASTICO STIRENE-BUTADIENE (SBR)</td>
<td>Struttura chimica</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>177</td>
</tr>
<tr>
<td>ELASTOMERI TERMOPLASTICI ETILENE-PROPILENE (EPM ED EPDM)</td>
<td>Struttura chimica</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Caratteristiche</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Trasformazione</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Impieghi</td>
<td>179</td>
</tr>
<tr>
<td>PARTE Sesta: QUADERNO DI SCIENZA DEI POLIMERI</td>
<td>GUIDA ALL’USO DEL QUADERNO DI PLASTIC@NDO</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>CHI DOVREBBE USARLO</td>
<td>Tecnici</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Responsabili della formazione</td>
</tr>
</tbody>
</table>
MATERIALE DIDATTICO

TEMPO NECESSARIO

APPROFONDIMENTI

TEST DI VALUTAZIONE INIZIALE

Istruzioni per la compilazione
Domande su Scienza dei Polimeri
Domande su Tecnologia dei Polimeri: Stampaggio
Domande su Tecnologia dei Polimeri: Estrusione
Domande su Tecnologia dei Polimeri: Stampaggio per soffiaggio
Domande su Tecnologia dei Polimeri: Termoformatura
Risposte
Risultati

LA STORIA DELLA PLASTICA

TEST DI VERIFICA 1

Argomenti di riferimento:
Risposte
Risultati

TEST DI VERIFICA 2

Argomenti di riferimento:
Risposte
Risultati

TEST DI VERIFICA 3

Argomenti di riferimento:
Risposte
Risultati

TEST DI VERIFICA 4

Argomenti di riferimento:
Risposte
Risultati

TEST DI VERIFICA 5

Argomenti di riferimento:
Risposte
Risultati

TEST DI VERIFICA 6

Argomenti di riferimento:
Risposte
Risultati

SIGLE DEI POLIMERI

RICONOSCERE I POLIMERI

TERMOPLASTICO O TERMOINDUREnte?
Ho scritto questo libro per aiutare i tecnici dell’industria a comprendere il ruolo del materiale nella regolazione ed ottimizzazione dei processi di trasformazione delle materie plastiche.

La lavorazione delle materie plastiche è una delle maggiori attività produttive e si stima che in Italia impieghi più di centoventimila addetti. Ciascun tecnico, trascorre la maggior parte delle ore lavorative in attività volte alla scelta dei materiali, la regolazione del processo ed all’eliminazione dei difetti.

Ho sentito la necessità di scrivere questo libro per venire incontro ai tecnici dell’industria. La letteratura tecnica sulle materie plastiche in Italia è poca e spesso di livello troppo specialistico; inoltre esistono poche scuole, a livello di istruzione superiore e professionale, che affrontano i temi della scienza e tecnologia delle materie plastiche. La maggior parte degli addetti alla trasformazione della plastica non ha fatto alcuno studio di chimica e tanto meno studi specifici sui polimeri.

Questo libro è stato pensato e scritto per tutti coloro che non hanno mai studiato la chimica e la scienza dei polimeri, ma che hanno imparato a lavorare la plastica con anni di esperienza e di duro lavoro. Sono sicuro, però, che questo libro sarà di giovamento anche per chi vuole ripensare a quello che già sa in maniera nuova e su solide basi scientifiche.

Ho utilizzato una descrizione semplice, senza fare ricorso a formule chimiche e matematiche, per aiutare il lettore a comprendere il “perché” di certi fenomeni, senza mai sacrificare la correttezza scientifica. Lo scopo del libro è quello di aiutare il lettore a conoscere i polimeri dal punto di vista microscopico (molecolare) per meglio comprenderne il comportamento macroscopico (caratteristiche del pezzo finito e del processo produttivo).

Il libro è suddiviso in due parti.

La prima parte è organizzata in brevi capitoli che affrontano ciascun argomento in maniera completa e pertanto possono anche essere letti in qualunque ordine dal lettore più esperto. Ogni capitolo è suddiviso in brevi paragrafi; i termini più importanti sono evidenziati, mentre per i termini più complessi si è riportata la spiegazione nell’apposito glossario. Ogni capitolo è riccamente illustrato con figure, diagrammi e tabelle.

La seconda parte del libro descrive brevemente le tecnologie più utilizzate per la trasformazione dei polimeri: l’estruzione, lo stampaggio ad iniezione, il soffiaggio di corpi cavi e la termoformatura. Oltre che presentare il processo di lavorazione, ho evidenziato il legame tra le caratteristiche del materiale (spiegate nella prima parte del libro) e la loro influenza sulla regolazione del processo.

Questa guida pratica è dedicata ai tecnici della produzione, ai responsabili del controllo qualità, agli addetti alla manutenzione, ai responsabili dell’acquisto delle materie prime che, ogni giorno, danno il loro fondamentale contributo alle attività economiche del nostro Paese. L’impegno, le capacità e la creatività di queste persone contribuiscono a fare crescere le aziende in cui lavorano.

Questo libro è il primo volume pubblicato per i tipi CQC Filippo Cangialosi Editore che si propone di diventare il punto di riferimento per tutti coloro che vogliono informarsi e formarsi sulla plastica. Quello che avete tra le mani non è solo un libro, ma uno strumento di formazione a distanza che può essere completato con gli altri prodotti editoriali, già pubblicati ed in preparazione, contrassegnati con il marchio Plastic@ndo.

Per maggiori informazioni vi invito a consultare il sito www.plasticando.it

Palermo, 16 Aprile 2002

Filippo Cangialosi
Con grande soddisfazione mi accingo a presentarvi la seconda edizione del libro “Proprietà e Lavorazione delle materie plastiche” dopo due anni dalla prima edizione.

Il successo della prima edizione, i commenti ed i suggerimenti che ho ricevuto mi hanno incoraggiato a rivedere e migliorare questo libro per venire incontro alle esigenze dei lettori in concomitanza con la sua ri-pubblicazione per i tipi di EuroPass Editore.

Le novità più importanti sono:

- L’aggiunta del capitolo 11 dedicato alla viscoelasticità dei polimeri; per la cui stesura ringrazio il Prof. Francesco Paolo La Mantia del Dipartimento di Ingegneria Chimica, dei Processi e dei Materiali dell’Università di Palermo. Questo capitolo affronta il tema della viscoelasticità dei polimeri in maniera chiara e semplice mettendo in evidenza il legame tra struttura, proprietà meccaniche e lavorazione dei polimeri.
- L’aggiunta della Parte Terza, dedicata alla presentazione dei polimeri termoplastici più utilizzati. Per ogni polimero è riportata una scheda di sintesi che introduce il lettore alla Struttura chimica, Caratteristiche, Trasformazione, Impieghi, Nomi commerciali.
- L’aggiunta della Parte Quarta, dedicata alla presentazione dei polimeri termoindurenti più utilizzati. Per ogni polimero è riportata una scheda di sintesi che introduce il lettore alla Struttura chimica, Caratteristiche, Trasformazione, Impieghi, Nomi commerciali.
- L’aggiunta della Parte Quinta, dedicata alla presentazione dei polimeri elastomerici più utilizzati. Per ogni polimero è riportata una scheda di sintesi che introduce il lettore alla Struttura chimica, Caratteristiche, Trasformazione, Impieghi, Nomi commerciali.
- Il numero delle pagine è quasi raddoppiato passando da 102 a 178

Con l’auspicio che questa seconda edizione possa avere il successo della prima, auguro a tutti buona lettura.

Palermo, 23 giugno 2004

Filippo Cangialosi
Palermo, Italia

www.plasticando.it info@plasticando.it
Con grande soddisfazione vi presento la terza edizione del libro “Proprietà e Lavorazione delle materie plastiche”.

La novità più importante di questo libro è che “raddoppia” in fatti alla fine è stato aggiunto il contenuto del “Quaderno di scienza dei polimeri” che prima era un volume a se stante.

Il Quaderno di Scienza dei polimeri nasceva come uno strumento di autoformazione destinato ai tecnici dell’industria delle materie plastiche.

Il volume è stato pensato e scritto per le esigenze dell’operatore di linea, quindi il suo contenuto è preciso e pratico e riporta solo le informazioni utili per l’operatore di linea.

Qualcuno ha detto che “non tutto è misurabile, ma solo ciò che è misurabile può essere migliorato”. Riteniamo che le conoscenze di ciascun tecnico possano e debbano essere misurate per individuare i punti di forza e di debolezza della propria conoscenza e per avviare un progetto di miglioramento.

Il grande filosofo greco Socrate diceva che il vero saggio è “colui che sa di non sapere” perché solo chi ha consapevolezza dei propri limiti ha la forza e la determinazione di migliorarsi.

Con l’aggiunta di questo Quaderno vogliamo aiutare tutti i tecnici dell’industria della plastica a guardare avanti verso la strada del miglioramento; allo stesso tempo ci auguriamo che esso possa essere utile per tutti coloro che sono responsabili della formazione dei dipendenti perché imparino a valorizzare le risorse umane.

Palermo, 19 marzo 2010

Filippo Cangialosi
Palermo, Italia

www.plasticando.it info@plasticando.it
Voglio esprimere il mio riconoscimento a tutte le persone che hanno reso possibile la pubblicazione di questo libro.

In particolare il mio ringraziamento e la mia stima vanno all'Ing. Gianluca La Manna per la sua collaborazione nella ricerca bibliografica e la preparazione delle illustrazioni.

Grazie al Prof. Francesco Paolo La Mantia che con le sue conoscenze, il suo spirito pratico ed il suo ingegno mi ha fatto conoscere il mondo della plastica e mi supporta continuamente nella mia attività lavorativa.

Grazie a tutti coloro che mi hanno insegnato qualcosa sulla plastica.

Grazie ai miei clienti che mi hanno dato la possibilità di mettere al loro servizio le mie conoscenze.

Grazie a tutti i tecnici che hanno partecipato ai corsi di formazione da me tenuti, perché con le loro domande ed osservazioni mi hanno permesso di ordinare il mio sapere in un libro dedicato interamente alla loro formazione.

Grazie, in particolare, a mia moglie Milena per la sua pazienza ed il supporto datomi durante la redazione e la pubblicazione di questo libro.

Filippo Cangialosi
Palermo, Italia

www.plasticando.it info@plasticando.it
A mia moglie Milena, per il suo continuo sostegno alla mia attività e alla stesura di questo volume